The Spindle Protein CHICA Mediates Localization of the Chromokinesin Kid to the Mitotic Spindle
نویسندگان
چکیده
Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.
منابع مشابه
SnapShot: Nonmotor Proteins in Spindle Assembly
*DDA3 Human, mouse Spindle microtubules, midbody Bundles microtubules; regulates the spindle pole localized microtubule depolymerase Kif2a Fidgetin Human, mouse (Fignl1), fl y (Fignl1), worm (FIGL-1), frog (Fignl1) Centrosomes Catalyzes turnover of γ-tubulin; contributes to microtubule depolymeriza-tion and chromosome movement Growing microtubule plus ends Stabilizes microtubule plus ends; infl...
متن کاملThe chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific...
متن کاملThe chromokinesin Kid is required for maintenance of proper metaphase spindle size.
The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we not...
متن کاملCdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes.
The chromokinesin Kid is important in chromosome alignment at the metaphase plate. Here, we report that Kid function is regulated by phosphorylation. We identify Ser427 and Thr463 as M phase-specific phosphorylation sites and Cdc2-cyclin B as a Thr463 kinase. Kid with a Thr463 to alanine mutation fails to be localized on chromosomes and is only detected along spindles, although it retains the a...
متن کاملA functional relationship between NuMA and kid is involved in both spindle organization and chromosome alignment in vertebrate cells.
We examined spindle morphology and chromosome alignment in vertebrate cells after simultaneous perturbation of the chromokinesin Kid and either NuMA, CENP-E, or HSET. Spindle morphology and chromosome alignment after simultaneous perturbation of Kid and either HSET or CENP-E were no different from when either HSET or CENP-E was perturbed alone. However, short bipolar spindles with organized pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008